کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5782016 | 1637141 | 2017 | 22 صفحه PDF | دانلود رایگان |
- A model of distribution of diagenetic alterations and reservoir heterogeneity within the depositional facies is established.
- Diagenetic alternations linked to lithofacies, sandstone architecture and porewater chemistry during burial.
- The various diagenetic alternations result in various pore-structures.
Diagenesis is of decisive significance for the reservoir heterogeneity of most clastic reservoirs. Linking the distribution of diagenetic processes to the depositional facies and sequence stratigraphy has in recent years been discipline for predicting the distribution of diagenetic alterations and reservoir heterogeneity of clastic reservoirs. This study constructs a model of distribution of diagenetic alterations and reservoir heterogeneity within the depositional facies by linking diagenesis to lithofacies, sandstone architecture and porewater chemistry during burial. This would help to promote better understanding of the distribution of reservoir quality evolution and the intense heterogeneity of reservoirs. Based on an analogue of deltaic distributary channel belt sandstone in Upper Triassic Yanchang Formation, 83 sandstone plug samples were taken from 13 wells located along this channel belt. An integration of scanning electron microscopy, thin sections, electron microprobe analyses, rate-controlled porosimetry (RCP), gas-flow measurements of porosity and permeability, and nuclear magnetic resonance (NMR) experiments, together with published data, were analysed for the distribution, mineralogical and geochemical characteristics of detrital and diagenetic components and the distribution of reservoir quality within the distributary channel belt.Distribution of diagenetic alterations and reservoir heterogeneity within the distributary channel belt sandstones include (i) formation of high quality chlorite rims in the middle part of thick sandstones with coarser grain sizes and a lower content of ductile components resulted from the greater compaction resistance of these sandstones (providing larger pore spaces for chlorite growth), leading to formation of the intergranular pore - wide sheet-like throat and intergranular pore - intragranular pore - wide sheet-like throat (Φ>15%, k>1mD) in the middle part of thick sandstones; (ii) formation of thinner chlorite rims in the middle part of thinner sandstones is associated with the intergranular pore - intragranular pore - narrow sheet-like throat (9%<Φ<14%, 0.2mD
Journal: Marine and Petroleum Geology - Volume 86, September 2017, Pages 950-971