کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5821767 1557813 2016 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Novel dengue virus inhibitor 4-HPR activates ATF4 independent of protein kinase R-like Endoplasmic Reticulum Kinase and elevates levels of eIF2α phosphorylation in virus infected cells
موضوعات مرتبط
علوم زیستی و بیوفناوری ایمنی شناسی و میکروب شناسی ویروس شناسی
پیش نمایش صفحه اول مقاله
Novel dengue virus inhibitor 4-HPR activates ATF4 independent of protein kinase R-like Endoplasmic Reticulum Kinase and elevates levels of eIF2α phosphorylation in virus infected cells
چکیده انگلیسی
Infections by dengue virus (DENV) are increasing worldwide, with an urgent need for effective anti-DENV agents. We recently identified N-(4-hydroxyphenyl) retinamide (4-HPR), an anti-DENV agent effective against all 4 serotypes of DENV in cell culture, and in a lethal mouse model for DENV infection (Fraser et al., 2014b). Although identified as an inhibitor of DENV non-structural protein 5 (NS5) recognition by host nuclear import proteins, the precise impact and mode of action of 4-HPR in effecting DENV clearance remains to be defined. Significantly, concurrent with decreased viral RNA and infectious DENV in 4-HPR-treated cells, we previously observed specific up-regulation of transcripts representing the Protein Kinase R-like Endoplasmic Reticulum Kinase (PERK) arm of the unfolded protein response (UPR) pathway upon 4-HPR addition. Here we pursue these findings in detail, examining the role of specific PERK pathway components in DENV clearance. We demonstrate that 4-HPR-induced nuclear localization of Activating Transcription Factor 4 (ATF4), a pathway component downstream from PERK, occurs in a PERK-independent manner, implying activation instead occurs through Integrated Stress Response (ISR) kinases. Significantly, ATF4 does not appear to be required for the antiviral activity of 4-HPR, suggesting transcriptional events induced by ATF4 do not drive the 4-HPR-induced antiviral state. Instead, we demonstrate that 4-HPR induces phosphorylation of eukaryotic translation initiation factor 2α (eIF2α), a target of ISR kinases which controls translation attenuation, and confirm the importance of phosphorylated-eIF2α in DENV infection using guanabenz, a specific inhibitor of eIF2α dephosphorylation. This study provides the first detailed insight into the cellular effects modulated by 4-HPR in DENV-infected cells, critical to progressing 4-HPR towards the clinic.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Antiviral Research - Volume 130, June 2016, Pages 1-6
نویسندگان
, , , , ,