کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5863055 | 1133793 | 2012 | 9 صفحه PDF | دانلود رایگان |

We examined the cytotoxicity effect of the serum protein coated gold nanoparticles (AuNPs) in the A549 cells. Negatively charged AuNPs were prepared by chemical reduction using citrate. The dimension and surface charge of AuNPs were characterized using transmission electron microscopy (TEM), dynamic light scattering (DLS), and zeta potential measurements. The AuNPs modified by the citrate anion were presumed to adsorb the serum proteins as indicated from the visible absorption spectroscopy, DLS, and quartz crystal microbalance (QCM) data. The QCM results indicated that among the constituents, fetal bovine serum (FBS) should be the major adsorbate species on the AuNPs incubated in the RPMI medium. The internalization of AuNPs into the A549 cells was also monitored using TEM and dark-field microscopy (DFM). Both methylthiazol tetrazolium (MTT) and lactate dehydrogenase (LDH) assays revealed that AuNPs were toxic as determined by their half-maximal inhibitory concentration. A flow cytometric and real-time PCR analysis of apoptotic genes along with the ATP depletion measurements suggested that AuNPs induce cell damages through extrinsic and intrinsic apoptotic pathways.
Highlights⺠Cytotoxicity of citrate-coated gold nanoparticles serum was checked in human carcinoma cells. ⺠Fetal bovine serum is the dominant adsorbate species on gold in cell culture media. ⺠Intrinsic and extrinsic apoptotic pathways should be efficient into the cells.
Journal: Toxicology in Vitro - Volume 26, Issue 2, March 2012, Pages 229-237