کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
588176 1453338 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ozone measurements monitoring using data-based approach
ترجمه فارسی عنوان
نظارت بر اندازه گیری ازن با استفاده از رویکرد مبتنی بر داده
کلمات کلیدی
تشخیص ناهنجاری؛ آمار MEWMA؛ MSPC؛ تجزیه و تحلیل مولفه های اصلی؛ آلودگی ازن؛ استراتژی مبتنی بر داده
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بهداشت و امنیت شیمی
چکیده انگلیسی


• An improved anomaly detection algorithm based on PCA developed.
• The proposed algorithm is applied to monitor ozone measurements.
• The detection results show effectiveness of the proposed method.

The complexity of ozone (O3) formation mechanisms in the troposphere makes the fast and accurate modeling of ozone very challenging. In the absence of a process model, principal component analysis (PCA) has been extensively used as a data-based monitoring technique for highly correlated process variables; however, conventional PCA-based detection indices often fail to detect small or moderate anomalies. In this work, we propose an innovative method for detecting small anomalies in highly correlated multivariate data. The developed method combines the multivariate exponentially weighted moving average (MEWMA) monitoring scheme with PCA modeling in order to enhance anomaly detection performance. Such a choice is mainly motivated by the greater ability of the MEWMA monitoring scheme to detect small changes in the process mean. The proposed PCA-based MEWMA monitoring scheme is successfully applied to ozone measurements data collected from Upper Normandy region, France, via the network of air quality monitoring stations. The detection results of the proposed method are compared to that declared by Air Normand air monitoring association.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Process Safety and Environmental Protection - Volume 100, March 2016, Pages 220–231
نویسندگان
, , , ,