کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
5903185 | 1157057 | 2013 | 12 صفحه PDF | دانلود رایگان |

ObjectivePredominantly secreted by adipose tissue, adiponectin possesses insulin-sensitizing, anti-atherogenic, anti-inflammatory, and anti-angiogenic properties. Paradoxically, obesity is associated with declined plasma adiponectin levels; however, the underlying mechanisms remain elusive. In this study, we investigated the mechanistic involvement of MEK/ERK1/2 pathway in obesity-related adiponectin decrease.Materials/MethodsC57 BL/6 mice exposed to a high-fat diet (HFD) were employed as animal obesity model. Both fully-differentiated 3T3-L1 and mouse primary adipocytes were used in the in vitro experiments.ResultsObesity and plasma adiponectin decline induced by prolonged HFD exposure were associated with suppressed ERK1/2 activation in adipose tissue. In adipocytes, specific inhibition of MEK/ERK1/2 pathway decreased intracellular and secretory adiponectin levels, whereas adiponectin gene expression was increased, suggesting that MEK/ERK1/2 inhibition may promote adiponectin protein degradation. Cycloheximide (CHX)-chase assay revealed that MEK/ERK1/2 inhibition accelerated adiponectin protein degradation, which was prevented by MG132, a potent proteasome inhibitor. Immunoprecipitation assay showed that intracellular MEK/ERK1/2 activity was negatively associated with ubiquitinated adiponectin protein levels. Consistently, long-term HFD feeing in mice increased ubiquitinated adiponectin levels in the epididymal fat pads.ConclusionsAdipose tissue MEK/ERK1/2 activity can differentially regulate adiponectin gene expression and protein abundance and its suppression in obesity may play a mechanistic role in obesity-related plasma adiponectin decline.
Journal: Metabolism - Volume 62, Issue 8, August 2013, Pages 1137-1148