کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
5945515 1172351 2015 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improving identification of familial hypercholesterolaemia in primary care: Derivation and validation of the familial hypercholesterolaemia case ascertainment tool (FAMCAT)
موضوعات مرتبط
علوم پزشکی و سلامت پزشکی و دندانپزشکی کاردیولوژی و پزشکی قلب و عروق
پیش نمایش صفحه اول مقاله
Improving identification of familial hypercholesterolaemia in primary care: Derivation and validation of the familial hypercholesterolaemia case ascertainment tool (FAMCAT)
چکیده انگلیسی


- Up to 85% of familial hypercholesterolaemia (FH) cases are not diagnosed in the UK.
- Guidelines recommend individuals be assessed for FH if cholesterol over 7.5 mmol/L.
- Too many non-cases are identified using current FH case-finding recommendations.
- We developed and validated a new FH case-finding tool (FAMCAT) for primary care.
- FAMCAT prioritises cases for further clinical assessment using established criteria.

ObjectiveHeterozygous familial hypercholesterolaemia (FH) is a common autosomal dominant disorder. The vast majority of affected individuals remain undiagnosed, resulting in lost opportunities for preventing premature heart disease. Better use of routine primary care data offers an opportunity to enhance detection. We sought to develop a new predictive algorithm for improving identification of individuals in primary care who could be prioritised for further clinical assessment using established diagnostic criteria.MethodsData were analysed for 2,975,281 patients with total or LDL-cholesterol measurement from 1 Jan 1999 to 31 August 2013 using the Clinical Practice Research Datalink (CPRD). Included in this cohort study were 5050 documented cases of FH. Stepwise logistic regression was used to derive optimal multivariate prediction models. Model performance was assessed by its discriminatory accuracy (area under receiver operating curve [AUC]).ResultsThe FH prediction model (FAMCAT), consisting of nine diagnostic variables, showed high discrimination (AUC 0.860, 95% CI 0.848-0.871) for distinguishing cases from non-cases. Sensitivity analysis demonstrated no significant drop in discrimination (AUC 0.858, 95% CI 0.845-0.869) after excluding secondary causes of hypercholesterolaemia. Removing family history variables reduced discrimination (AUC 0.820, 95% CI 0.807-0.834), while incorporating more comprehensive family history recording of myocardial infraction significantly improved discrimination (AUC 0.894, 95% CI 0.884-0.904).ConclusionThis approach offers the opportunity to enhance detection of FH in primary care by identifying individuals with greatest probability of having the condition. Such cases can be prioritised for further clinical assessment, appropriate referral and treatment to prevent premature heart disease.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Atherosclerosis - Volume 238, Issue 2, February 2015, Pages 336-343
نویسندگان
, , , , ,