کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
598354 1454090 2006 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Molecular dynamics simulations of spontaneous bile salt aggregation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی شیمی کلوئیدی و سطحی
پیش نمایش صفحه اول مقاله
Molecular dynamics simulations of spontaneous bile salt aggregation
چکیده انگلیسی

Bile salts are surfactants in bile that facilitate digestion, adsorption and excretion of various compounds. They have planar hydrophobic and hydrophilic faces and therefore exhibit some unusual properties; including the shape and size of the micelles that they form. Molecular dynamics simulations of the spontaneous aggregation of six bile salts (cholate (CHD), glycocholate (GCH), taurocholate (TCH), glycochenodeoxycholate (GCD), glycodeoxycholate (GDX) and glycolithocholate (GLC)) were performed in an aqueous phase to gain insight into their micellar structure. The aggregates that formed spontaneously from a random distribution of molecules ranged in size from 8 to 17 molecules. The structures are highly dynamic in nature and are on average oblate, but can vary from oblate, to spherical or prolate. Intermolecular hydrogen bonding within the micelles was found to be an important factor in determining the micelle size, structure and dynamics. The molecular arrangement within the micelles maximises the hydration of the hydrophilic chains and some favourable orientations for adjacent molecules were acquired. The dynamics of the micelles were investigated using the hydrogen-bond lifetime autocorrelation function correlation time, which exhibited a relationship with the degree of hydroxylation. Comparison of the proposed model to the three literature models showed some features of the disk shaped models of Cary and Small [M.C. Cary, D.M. Small, Arch. Intern. Med. 130 (1972) 506–527] and Kawamura et al. [H. Kawamura, Y. Murata, T. Yamaguchi, H. Igimi, M. Tanaka, G. Sugihara, J.P. Kratohvil, J. Phys. Chem. 93 (1989) 3321–3326], whereas the third, inverted helix model of Giglio et al. [E. Giglio, S. Loreti, N.V. Pavel, J. Phys. Chem. 92 (1988) 2858–2862] can be discounted. The proposed model is better than the existing models, which assumed a rigid and structured molecular arrangement.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects - Volume 280, Issues 1–3, 1 June 2006, Pages 182–193
نویسندگان
, , , , ,