کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6021759 1580649 2015 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Cumulative mtDNA damage and mutations contribute to the progressive loss of RGCs in a rat model of glaucoma
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی عصب شناسی
پیش نمایش صفحه اول مقاله
Cumulative mtDNA damage and mutations contribute to the progressive loss of RGCs in a rat model of glaucoma
چکیده انگلیسی


- Progressive RGC loss after transiently high intraocular pressure (IOP)
- Cumulative mtDNA damage and mutations occur in RGCs after IOP elevation.
- mtDNA damage and mutations result in RGC apoptosis.
- mtDNA alterations increase the vulnerability of RGC to high IOP and glutamate level.
- Preventing mtDNA alterations improves RGC survival in glaucomatous rat model.

Glaucoma is a chronic neurodegenerative disease characterized by the progressive loss of retinal ganglion cells (RGCs). Mitochondrial DNA (mtDNA) alterations have been documented as a key component of many neurodegenerative disorders. However, whether mtDNA alterations contribute to the progressive loss of RGCs and the mechanism whereby this phenomenon could occur are poorly understood. We investigated mtDNA alterations in RGCs using a rat model of chronic intraocular hypertension and explored the mechanisms underlying progressive RGC loss. We demonstrate that the mtDNA damage and mutations triggered by intraocular pressure (IOP) elevation are initiating, crucial events in a cascade leading to progressive RGC loss. Damage to and mutation of mtDNA, mitochondrial dysfunction, reduced levels of mtDNA repair/replication enzymes, and elevated reactive oxygen species form a positive feedback loop that produces irreversible mtDNA damage and mutation and contributes to progressive RGC loss, which occurs even after a return to normal IOP. Furthermore, we demonstrate that mtDNA damage and mutations increase the vulnerability of RGCs to elevated IOP and glutamate levels, which are among the most common glaucoma insults. This study suggests that therapeutic approaches that target mtDNA maintenance and repair and that promote energy production may prevent the progressive death of RGCs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurobiology of Disease - Volume 74, February 2015, Pages 167-179
نویسندگان
, , , , , , , , , , , , ,