کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6022816 | 1580700 | 2010 | 11 صفحه PDF | دانلود رایگان |

The endoplasmic reticulum (ER) stress-mediated pathway is involved in a wide range of human neurodegenerative disorders. Hence, molecules that regulate the ER stress response represent potential candidates as drug targets to tackle these diseases. In previous studies we demonstrated that upon acetylation the reticulon-1C (RTN-1C) variant of the reticulon family leads to inhibition of histone deacetylase (HDAC) enzymatic activity and endoplasmic reticulum stress-dependent apoptosis. Here, by microarray analysis of the whole human genome we found that RTN-1C is able to specifically regulate gene expression, modulating transcript clusters which have been implicated in the onset of neurodegenerative disorders. Interestingly, we show that some of the identified genes were also modulated in vivo in a brain-specific mouse model overxpressing RTN-1C. These data provide a basis for further investigation of RTN-1C as a potential molecular target for use in therapy and as a specific marker for neurological diseases.
Research Highlights⺠RTN-1C modulates gene expression. ⺠RTN-1C transgenic mice show ER stress and cell death. ⺠RTN-1C affects synaptic plasticity.
Journal: Neurobiology of Disease - Volume 40, Issue 3, December 2010, Pages 634-644