کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6277102 1295748 2010 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Diabetes differentially affects the content of exocytotic proteins in hippocampal and retinal nerve terminals
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله
Diabetes differentially affects the content of exocytotic proteins in hippocampal and retinal nerve terminals
چکیده انگلیسی
Diabetes has been associated with cognitive and memory impairments, and with alterations in color and contrast perception, suggesting that hippocampus and retina are particularly affected by this disease. A few studies have shown that diabetes differentially affects neurotransmitter release in different brain regions and in retina, and induces structural and molecular changes in nerve terminals in both hippocampus and retina. We now detailed the impact over time of diabetes (2, 4 and 8 weeks of diabetes) on a large array of exocytotic proteins in hippocampus and retina.The exocytotic proteins density was evaluated by immunoblotting in purified synaptosomes and in total extracts of hippocampus and retina from streptozotocin-induced diabetic and age-matched control animals. Diabetes affected differentially the content of synaptic proteins (VAMP-2, SNAP-25, syntaxin-1, synapsin-1 and synaptophysin) in hippocampal and retinal nerve terminals. Changes were more pronounced and persistent in hippocampal nerve terminals. In general, the alterations in retina occurred earlier, but were transitory, with the exception of synapsin-1, since its content decreased at all time points studied. The content of synaptotagmin-1 and rabphilin 3a in nerve terminals of both tissues was not affected. In total extracts, no changes were detected in the retina, whereas in hippocampus SNAP-25 and syntaxin-1 content was decreased, particularly when more drastic changes were also detected in nerve terminals. These results show that diabetes affects the content of several exocytotic proteins in hippocampus and retina, mainly at the presynaptic level, but hippocampus appears to be more severely affected. These changes might influence neurotransmission in both tissues and may underlie, at least partially, previously detected physiological changes in diabetic humans and animal models. Since diabetes differentially affects exocytotic proteins, according to tissue and insult duration, functional studies will be required to assess the physiological impairment induced by diabetes on the exocytosis in central synapses.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neuroscience - Volume 169, Issue 4, 15 September 2010, Pages 1589-1600
نویسندگان
, , , , , ,