کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6310474 | 1307470 | 2013 | 7 صفحه PDF | دانلود رایگان |
- During 1,2,4-TCB mineralization signal molecules are produced.
- Microbial communities attached on a carrier establish a cell-to-cell communication.
- Efficient cell-to-cell communication results in high 1,2,4-TCB mineralization.
- Quantity and quality of signaling molecules depend on the type of inoculation.
- Cell-to-cell communication occurs via interspecies communication.
The objective of the present study was to get more insight into the mechanisms that govern the high mineralization potential of a microbial community attached on a carrier material, as we found in an earlier study (Wang et al., 2010). A 1,2,4-Trichlorobenzene (1,2,4-TCB) degrading microbial community - attached (MCCP) and non-attached (MCLM) on clay particles - was inoculated into a simplified mineral medium system. Signaling molecules (AHLs), cell growth and 1,2,4-TCB mineralization were measured at different sampling points. The production of AHLs in the MCCP system increased continuously with increasing key degrader (Bordetella sp.) cell growth and a positive correlation was observed between the production of AHLs and 1,2,4-TCB mineralization. In the MCLM system, however, 1,2,4-TCB mineralization was lower than in the MCCP system; the AHLs production per Bordetella cell was higher than in MCCP and there was no correlation between AHLs and mineralization. Moreover, in the MCCP system less different AHLs were produced than in the MCLM system. These results indicate that a microbial community attached on a carrier material has an advantage over a non-attached community: it produces signaling molecules with much less energy and effort to achieve a well-directed cell-to-cell communication resulting in a high and effective mineralization.
Journal: Chemosphere - Volume 92, Issue 11, September 2013, Pages 1403-1409