کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6344819 1621213 2016 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring
ترجمه فارسی عنوان
بازخوانی شاخص بازدهی چند منطقه ای و چندتایی برای نظارت بر عملکرد محصول محلی برنج
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات کامپیوتر در علوم زمین
چکیده انگلیسی
This paper presents an operational chain for high-resolution leaf area index (LAI) retrieval from multiresolution satellite data specifically developed for Mediterranean rice areas. The proposed methodology is based on the inversion of the PROSAIL radiative transfer model through the state-of-the-art nonlinear Gaussian process regression (GPR) method. Landsat and SPOT5 data were used for multitemporal LAI retrievals at high-resolution. LAI estimates were validated using time series of in situ LAI measurements collected during the rice season in Spain and Italy. Ground LAI data were collected with smartphones using PocketLAI, a specific phone application for LAI estimation. Temporal evolution of the LAI estimates using Landsat and SPOT5 data followed consistently the temporal evolution of the in situ LAI measurements acquired on several Mediterranean rice varieties. The estimates had a root-mean-square-error (RMSE) of 0.39 and 0.51 m2/m2 in Spain and 0.38 and 0.47 m2/m2 in Italy for Landsat and SPOT5 respectively, with a strong correlation (R2 > 0.92) for both cases. Spatial-temporal assessment of the estimated LAI from Landsat and SPOT5 data confirmed the robustness and consistency of the retrieval chain. This paper demonstrates the importance of an adequate characterization of the underlying rice background in order to address changes in background condition related to water management. Results highlight the potential of the proposed chain for deriving multitemporal near real-time decametric LAI maps fundamental for operational rice crop monitoring, and demonstrate the readiness of the proposed method for the processing of data such as the recently launched Sentinel-2.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Remote Sensing of Environment - Volume 187, 15 December 2016, Pages 102-118
نویسندگان
, , , , , , ,