کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6346963 | 1621260 | 2014 | 13 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery
ترجمه فارسی عنوان
نقشه برداری ذرت و سویا با قابلیت گسترش زمان: یک آزمایش چند ساله با استفاده از تصاویر لندست
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
نقشه برداری درختچه، لندست، ذرت، سویا، فنولوژی،
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
کامپیوتر در علوم زمین
چکیده انگلیسی
The classification method was tested in mapping corn and soybean, which are two dominant summer crop types in the central United States, and the experiment was carried out for Doniphan County, Kansas during years 2006-2010. Over 100 Landsat TM and ETMÂ +Â images in this period were utilized and phenological metrics were calculated from Enhanced Vegetation Index time series using techniques including image segmentation and curve-fitting. Several sets of input variables, ranging from multi-spectral features of selected dates, which are widely used in traditional mapping efforts, to phenological metrics and derived measurements such as accumulated temperature, were tested using a random forest classifier. When the classifier was trained by reference data collected in the same year as that of remotely sensed data, most sets of input variables yielded accuracies higher than 88%. However, when the training data used by the classifier were obtained in a year different from the mapping years, only input sets containing phenological metrics were able to achieve acceptable accuracies greater than 80%. The use of phenological metrics as classification inputs avoids the restrictive requirements of a large ground reference dataset, enabling frequent and routine crop mapping without repeated collection of reference data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Remote Sensing of Environment - Volume 140, January 2014, Pages 1-13
Journal: Remote Sensing of Environment - Volume 140, January 2014, Pages 1-13
نویسندگان
Liheng Zhong, Peng Gong, Gregory S. Biging,