کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6363794 | 1622931 | 2015 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Forecasting furrow irrigation infiltration using artificial neural networks
ترجمه فارسی عنوان
پیش بینی نفوذ آبیاری خاک با استفاده از شبکه های عصبی مصنوعی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
شبکه های عصبی مصنوعی، حجم آب نفوذ شده، آبیاری مورچه،
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم کشاورزی و بیولوژیک
علوم زراعت و اصلاح نباتات
چکیده انگلیسی
An artificial neural network (ANN) was developed for estimating the infiltrated water volume (Z) under furrow irrigation. A feed-forward neural network using back-propagation training algorithm was developed for the prediction. Four variables were used as input parameters; inflow rate (Qo), furrow length (L), waterfront advance time at the end of the furrow (TL) and infiltration opportunity time (To). The Z was the one node in the output layer. The data used to develop the ANN model were taken from published experiments. The ANN model predicted Z over a wide range of the input variables with statistical analysis indicating that it can successfully predict Z with a high degree of accuracy. Performance evaluation criteria indicated that the ANN model was better than the two-point method using a volume balance model. Using testing and validation data sets to compare the ANN model with the two-point method shows that the two-point method had a mean coefficient of determination (R2) value that was about 3.6% less accurate than that from the ANN model. Also, the mean root mean square error (RMSE) value of 0.0135 m3 mâ1 for the two-point method was almost double that of mean values for the ANN model. The relative errors of computed Z values for the ANN model were mostly around ±10%. Therefore, the ANN model is applicable to other soils and to different furrow irrigation hydraulics.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Agricultural Water Management - Volume 148, 31 January 2015, Pages 63-71
Journal: Agricultural Water Management - Volume 148, 31 January 2015, Pages 63-71
نویسندگان
M.A. Mattar, A.A. Alazba, T.K. Zin El-Abedin,