کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6363794 1622931 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Forecasting furrow irrigation infiltration using artificial neural networks
ترجمه فارسی عنوان
پیش بینی نفوذ آبیاری خاک با استفاده از شبکه های عصبی مصنوعی
کلمات کلیدی
شبکه های عصبی مصنوعی، حجم آب نفوذ شده، آبیاری مورچه،
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم زراعت و اصلاح نباتات
چکیده انگلیسی
An artificial neural network (ANN) was developed for estimating the infiltrated water volume (Z) under furrow irrigation. A feed-forward neural network using back-propagation training algorithm was developed for the prediction. Four variables were used as input parameters; inflow rate (Qo), furrow length (L), waterfront advance time at the end of the furrow (TL) and infiltration opportunity time (To). The Z was the one node in the output layer. The data used to develop the ANN model were taken from published experiments. The ANN model predicted Z over a wide range of the input variables with statistical analysis indicating that it can successfully predict Z with a high degree of accuracy. Performance evaluation criteria indicated that the ANN model was better than the two-point method using a volume balance model. Using testing and validation data sets to compare the ANN model with the two-point method shows that the two-point method had a mean coefficient of determination (R2) value that was about 3.6% less accurate than that from the ANN model. Also, the mean root mean square error (RMSE) value of 0.0135 m3 m−1 for the two-point method was almost double that of mean values for the ANN model. The relative errors of computed Z values for the ANN model were mostly around ±10%. Therefore, the ANN model is applicable to other soils and to different furrow irrigation hydraulics.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Agricultural Water Management - Volume 148, 31 January 2015, Pages 63-71
نویسندگان
, , ,