کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6386662 1327843 2016 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Chlorophyll-a variability in the Seychelles-Chagos Thermocline Ridge: Analysis of a coupled biophysical model
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات اقیانوس شناسی
پیش نمایش صفحه اول مقاله
Chlorophyll-a variability in the Seychelles-Chagos Thermocline Ridge: Analysis of a coupled biophysical model
چکیده انگلیسی
The biological variability of the upwelling region of the Seychelles-Chagos Thermocline Ridge (SCTR), both at surface and subsurface levels, is investigated using monthly outputs of a coupled biophysical model from 1958 to 2011. Owing to its large spatial distribution and sensitivity to climate variability, the SCTR is studied as three distinct regions; namely, sub-regions 1 (western; 5°S-12°S, 55°E-65°E), 2 (central; 5°S-12°S, 65°E-75°E) and 3 (eastern; 5°S-12°S, 75°E-90°E). Surface and subsurface chlorophyll-a (Chl-a) exhibit completely different response mechanisms in sub-region 3 compared to sub-regions 1 and 2 during El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) events. During the intense 1997/1998 ENSO-IOD event, the high Chl-a tongue observed in the eastern Indian Ocean induces an increase in surface concentration in sub-region 3, whose subsurface variability is also substantially less (more) impacted by downwelling (upwelling) Rossby waves generated by El Niño (La Niña) forcing. After filtering out the annual signal, wavelet analysis of surface Chl-a revealed a significant 6 month periodicity in sub-regions 1 and 2 whereas a 5-year signal dominated in sub-region 3. The latter suggests that sub-region 3 is more prone to different ENSO/IOD influences, due to its proximity to the eastern Indian Ocean. In the unfiltered data, the subsurface Chl-a in sub-region 3 exhibits a strong signal near 1 year, with sub-regions 1 and 2 having a pronounced 6-year and 5-year signals respectively. These analyses show that the SCTR cannot be investigated as a single homogeneous region due to its large spatial distribution and different response mechanisms to climate events. Furthermore, changes in SST, thermocline depth, winds and Chl-a before and after the 1976-1977 climate shift differed across the SCTR, further highlighting the heterogeneity of this sensitive region in the Indian Ocean.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Marine Systems - Volume 154, Part B, February 2016, Pages 220-232
نویسندگان
, , ,