کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6408521 1629456 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Extraction of available and labile fractions of mercury from contaminated soils: The role of operational parameters
ترجمه فارسی عنوان
استخراج بخش های قابل دسترس و ضایعات جیوه از خاک های آلوده: نقش پارامترهای عملیاتی
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
چکیده انگلیسی


- Operational parameters' role on available and labile Hg fractions extraction from soil
- Different soil:extractant ratios and extractant solutions were considered.
- Kinetic experiment to optimize extraction duration and study the rate of extraction
- pH and particle size of the soil influenced the Hg extraction process.

One of the recognized challenges in chemical extraction of mercury from soil is the diversity of procedures that are currently available in literature and that differ in terms of the extractant solution used, soil:extractant ratio and duration of extraction. Therefore, this study focused on establishing the role of operational parameters for extraction of the available and labile fractions of mercury from soils, considering different soil:extractant ratios and the kinetics of extraction. The suitability of 1.0 mol L− 1 ammonium acetate at pH 7 and 0.1 mol L− 1 HCl as extractants for the available fraction and the extraction of the labile fraction using 0.5 mol L− 1 hydrochloric acid was investigated. No statistical differences were found between ammonium acetate and 0.1 mol L− 1 HCl; therefore both extractants can be used for estimating the available fraction. It was also observed that a soil:extractant ratio of 1.5 g of soil to 100 mL of extractant favors mercury extraction. For the available fraction an extraction of 30 min seems enough, as no further significant change was observed in the quantity of mercury extracted thereafter. For the labile fraction increase the extraction duration to at least 24 h is recommended.The data was fitted into kinetic models, and it was observed that the two first-order reactions and the diffusion models help to understand the behavior of mercury extraction from soil, clearly showing that in all cases the rate of mercury extraction was faster in the first 10 h and declined after that period. The characteristics of the soil influenced the extraction of mercury, and it was verified that pH and particle size of the soil influenced the mercury extraction process, as results suggested that an acidic soil might have a reduced ability to strongly retain metals and soils with higher porosity showed lower rates of mercury extraction.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Geoderma - Volumes 259–260, December 2015, Pages 213-223
نویسندگان
, , , , ,