کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6410160 1629917 2016 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Linking the Budyko framework and the Dunne diagram
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله
Linking the Budyko framework and the Dunne diagram
چکیده انگلیسی


- Similarity on streamflow behaviour is assessed in catchments scale throughout the continent.
- Streamflow characteristics follow the water and energy balances in the Budyko framework.
- The variability on dryness, vegetation, topography and soils drive streamflow similarity.
- The hydrological similarity links the Budyko framework and the Dunne diagram.

SummaryThe spatial and temporal heterogeneity of climate, soils, topography and vegetation control the water and energy balances among catchments. Two well-known hydrological theories underpinning these processes are the Budyko framework and the Dunne diagram. Relating the scaling of water-energy balances (Budyko) and runoff generation mechanisms (Dunne) raises some important catchment comparison questions, namely: (i) how do streamflow characteristics vary according to the annual water and energy balances?; (ii) to what extent do biophysical drivers of runoff explain the observed streamflow variability?; and (iii) are there quantifiable process overlaps between these two approaches, and can they offer insights into the mechanics of catchment co-evolution? This study addresses these questions by analysing daily streamflow and precipitation time series data to quantify hydrological similarity across 355 catchments located along a tropical-temperate climatic gradient in eastern Australia. We used eight hydrological metrics to describe the hydrological response over a 33-year period (1980-2013). Hierarchical cluster, ordination analysis, the Budyko framework, and generalized additive models were used to evaluate hydrological similarity, extract the dominant response, and examine how the landscape and climatic characteristics of catchments influence the dominant streamflow response. The catchments were classified into five clusters based on the analysis of their hydrological characteristics and similarity, which vary along the annual water and energy balances gradient in the Budyko framework. Furthermore, we show that the streamflow similarity is explained by six catchment-specific biophysical factors that overlap with those described by the Dunne diagram for runoff generation, which in this case have the following order of relative importance: (i) Dryness Index; (ii) Fraction of Photosynthetically Active Radiation; (iii) Saturated Hydraulic Conductivity; (iv) Soil Depth; (v) Maximum Slope and (vi) Fraction of Woody Vegetation Cover. The research advances our understanding of the role of biophysical controls on hydrologic similarity and formal process links between the Budyko Framework and Dunne diagram of runoff mechanisms.

202

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Hydrology - Volume 535, April 2016, Pages 581-597
نویسندگان
, , , , ,