کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6411113 1629923 2015 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An iterative ensemble Kalman filter with one-step-ahead smoothing for state-parameters estimation of contaminant transport models
ترجمه فارسی عنوان
یک فیلتر کالمن با تکرار یک مرحله ای برای تخمین مدل های حمل و نقل آلودگی به حالت پارامتر
کلمات کلیدی
برآورد پارامتر حالت، حمل و نقل آلاینده های زیرزمینی، گروه کالمن فیلتر، صاف کردن یک مرحله ای، برآورد بیزی،
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
چکیده انگلیسی


- We introduce a one-step-ahead smoothing joint ensemble Kalman filter (Joint-EnKFOSA).
- We propose an efficient iterative analysis scheme for the parameters, Joint-IEnKFOSA.
- We implement the new algorithm for a state-parameters estimation problem.
- Joint-EnKFOSA provides more accurate estimates than standard Joint- and Dual-EnKFs.
- Joint-IEnKFOSA improves performances at a marginal increase in computational cost.

SummaryThe ensemble Kalman filter (EnKF) is a popular method for state-parameters estimation of subsurface flow and transport models based on field measurements. The common filtering procedure is to directly update the state and parameters as one single vector, which is known as the Joint-EnKF. In this study, we follow the one-step-ahead smoothing formulation of the filtering problem, to derive a new joint-based EnKF which involves a smoothing step of the state between two successive analysis steps. The new state-parameters estimation scheme is derived in a consistent Bayesian filtering framework and results in separate update steps for the state and the parameters. This new algorithm bears strong resemblance with the Dual-EnKF, but unlike the latter which first propagates the state with the model then updates it with the new observation, the proposed scheme starts by an update step, followed by a model integration step. We exploit this new formulation of the joint filtering problem and propose an efficient model-integration-free iterative procedure on the update step of the parameters only for further improved performances.Numerical experiments are conducted with a two-dimensional synthetic subsurface transport model simulating the migration of a contaminant plume in a heterogenous aquifer domain. Contaminant concentration data are assimilated to estimate both the contaminant state and the hydraulic conductivity field. Assimilation runs are performed under imperfect modeling conditions and various observational scenarios. Simulation results suggest that the proposed scheme efficiently recovers both the contaminant state and the aquifer conductivity, providing more accurate estimates than the standard Joint and Dual EnKFs in all tested scenarios. Iterating on the update step of the new scheme further enhances the proposed filter's behavior. In term of computational cost, the new Joint-EnKF is almost equivalent to that of the Dual-EnKF, but requires twice more model integrations than the standard Joint-EnKF.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Hydrology - Volume 527, August 2015, Pages 442-457
نویسندگان
, , ,