کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6411288 1629928 2015 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Detection, quantification and modelling of small-scale lateral translocation of throughfall in tree crowns of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.)
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
پیش نمایش صفحه اول مقاله
Detection, quantification and modelling of small-scale lateral translocation of throughfall in tree crowns of European beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) Karst.)
چکیده انگلیسی


- Repeated simultaneous measurements of gross and net precipitation for 26 rain events.
- Measurements and analyses for 175 spatially explicit points in a mixed beech-spruce stand.
- Gross precipitation was separated into canopy storage capacity, throughfall and lateral flow.
- Flow was observed beneath the crown centre of beech and the crown edge of spruce.
- Predicted discharge amounts corresponded well with measured stemflow of beech.

SummaryThe redistribution of precipitation in forests depends on the amount of above-canopy precipitation and is characterised by high small-scale variability. Although higher and lower values of net forest precipitation at small scales are typically averaged at larger spatial scales, the small-scale variability of throughfall needs to be understood because subordinate ecological processes in the forest ecosystem, e.g., regeneration of tree species, often take place at the same small scale. High stemflow amounts and canopy driplines at the crown edge of particular tree species can only be explained by lateral flow processes within tree crowns. This study tests the hypothesis that lateral water translocation within the crown can be determined from simultaneous records of precipitation at defined measurement points below and above the canopy by taking single-tree characteristics such as species and crown width into account. Spatially explicit simultaneous measurements of gross precipitation (above-canopy reference) and throughfall were conducted repeatedly at 175 measurements points in a mixed European beech-Norway spruce stand for a total of 26 individual rain events. Subsequent analysis with a new regression approach resulted in an estimated average canopy storage capacity of 3.5 mm and 5.8 mm for beech (leaf-bearing period) and spruce stands, respectively. Values of calculated lateral flow showed considerable variability between individual measurement points. The highest discharge amounts were observed at positions below the inner beech crowns during the leaf-bearing period. For an exemplary rainfall event with a gross precipitation of 25 mm, the predicted discharge ranged from 5 mm underneath the inner beech crown to about zero near the crown edge. A comparison with the measured values indicated that the predicted amount of lateral flow, which could be translated into stemflow for single beech trees, was realistic. However, for the same rainfall event, lateral flow in spruce crowns was mainly identified in the outer crown. The derived functions for calculating lateral water translocation may be incorporated into single-tree models.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Hydrology - Volume 522, March 2015, Pages 228-238
نویسندگان
, ,