کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6411569 | 1629929 | 2015 | 12 صفحه PDF | دانلود رایگان |
- Hydraulic modeling of floodplain-wetland reconnection scenarios.
- Eight reconnection scenarios assessed along the Lower Tisza River, Hungary.
- Levee setbacks are feasible for adjacent low population floodplain areas.
- Flood-height reduction and wetland reconnection are possible.
- Reconnection scenarios can result in multi-objective floodplain management.
SummaryDuring the late 19th Century, the Tisza River's vast floodplain-wetland system was largely disconnected by levees, facilitating “reclamation” for agriculture and resulting in an estimated loss of over 90% of historical wetlands. While levees have been successful in preventing catastrophic flooding for a century, Lower Tisza flood stage records have been set repeatedly during the last 15Â years. The decrease in the Tisza's current floodway carrying capacity has reduced the flood-protection level of the Tisza's aging levee system. Recently in Hungary, “Room for the River” policies have gained more prominence. To explore the possibilities of a room for the river approach along the Lower Tisza, we assess eight potential floodplain-reconnection scenarios between Csongrád, Hungary and the Hungary-Serbia border. A novel framework using hydrodynamic and geospatial modeling was used to perform planning-level evaluations of the tradeoffs between floodplain-reconnection scenarios and enhancement of the existing levee system. The scenarios evaluated include levee removal and levee setbacks to strategically reconnect significant historical wetlands while reducing flood levels. Scenario costs and human population impacts are also assessed. Impacts of reconnecting the Lower Tisza floodplain are compared to heightening levees, the prevailing strategy over the previous century. From a purely construction-cost perspective, heightening Lower Tisza levees is potentially the most cost-effective and politically expedient solution (i.e., impacts the least number of people). However, levee-heightening does not solve the long-term problem of reduced flood conveyance, which has been attributed to aggradation and increased floodplain roughness, nor does it result in wetland reconnection or enhancement of other floodplain ecosystem services. The suite of reconnection options we evaluate provides engineers, planners, and decision makers a framework from which they can further evaluate potential flood-risk reduction options. At least three of the eight reconnection scenarios (setting the western levee back, 1500-m, and 2000-m setbacks) along the Lower Tisza demonstrate that floodplain-wetland reconnection is possible while achieving the objectives of minimizing impacts on human populations and reducing flood heights.
Journal: Journal of Hydrology - Volume 521, February 2015, Pages 274-285