کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6413176 1629938 2014 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A new quality control procedure based on non-linear autoregressive neural network for validating raw river stage data
ترجمه فارسی عنوان
یک روش کنترل کیفیت جدید مبتنی بر شبکه عصبی مصنوعی غیر خطی برای تایید داده های مرحله خام رودخانه
کلمات کلیدی
داده های مرحله رودخانه، اعتبار سنجی، کنترل کیفیت، شبکه های عصبی مصنوعی غیر خطی،
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
چکیده انگلیسی


- A new quality control method for validating raw river stage data has been developed.
- This method is based on a non-linear autoregressive neural network (NARNN).
- A comparison with adapted conventional validation tests has been carried out.
- The new method is more efficient than the conventional validation tests.
- The method is a useful tool for the automatic validation of hydrological issues.

SummaryThe main purpose of this work is the develop of a new quality control method based on non-linear autoregressive neural networks (NARNN) for validating hydrological information, more specifically of 10-min river stage data, for automatic detection of incorrect records. To assess the effectiveness of this new approach, a comparison with adapted conventional validation tests extensively used for hydro-meteorological data was carried out. Different parameters of NARNN and their stability were also analyzed in order to select the most appropriate configuration for obtaining the optimal performance. A set of errors of different magnitudes was artificially introduced into the dataset to evaluate detection efficiency. The NARNN method detected more than 90% of altered records, when the magnitude of error introduced was very high, while conventional tests detected only around 13%. In addition, the NARNN method maintained a similar efficiency at the intermediate and lower error ratios, while the conventional tests were not able to detect more than 6% of erroneous data.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Hydrology - Volume 510, 14 March 2014, Pages 103-109
نویسندگان
, , , ,