کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6413184 1629938 2014 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Uncertainty estimation with bias-correction for flow series based on rating curve
ترجمه فارسی عنوان
برآورد عدم اطمینان با اصلاح متعصب برای سری جریان بر اساس منحنی رتبه بندی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
چکیده انگلیسی


- Correct possible bias in the streamflow data derived from rating curves.
- Stabilize residuals in streamflow estimation by two-side Box-Cox transformation.
- Generate streamflow ensembles using the bootstrap approach.
- Apply the method to Flinders and Gilbert rivers in Queensland of Australia.

SummaryStreamflow discharge constitutes one of the fundamental data required to perform water balance studies and develop hydrological models. A rating curve, designed based on a series of concurrent stage and discharge measurements at a gauging location, provides a way to generate complete discharge time series with a reasonable quality if sufficient measurement points are available. However, the associated uncertainty is frequently not available even though it has a significant impact on hydrological modelling. In this paper, we identify the discrepancy of the hydrographers' rating curves used to derive the historical discharge data series and proposed a modification by bias correction which is also in the form of power function as the traditional rating curve. In order to obtain the uncertainty estimation, we propose a further both-side Box-Cox transformation to stabilize the regression residuals as close to the normal distribution as possible, so that a proper uncertainty can be attached for the whole discharge series in the ensemble generation. We demonstrate the proposed method by applying it to the gauging stations in the Flinders and Gilbert rivers in north-west Queensland, Australia.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Hydrology - Volume 510, 14 March 2014, Pages 137-152
نویسندگان
, , , ,