کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6413235 1629938 2014 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Precipitation frequency analysis based on regional climate simulations in Central Alberta
ترجمه فارسی عنوان
تجزیه و تحلیل فرکانس بارش بر اساس شبیه سازی آب و هوا منطقه ای در آلبرتا مرکزی
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات فرآیندهای سطح زمین
چکیده انگلیسی


- Long-term sub-hourly extreme precipitation intensities are obtained by MM5.
- Precipitable water and 2-m air temperature are well simulated by MM5.
- High resolution (3 km) grid-based IDF curves are developed.
- The positive bias of MM5 IDF curves decreases with increase of return period.
- The bias of MM5 IDF curves is removed by quantile-based bias correction method.

SummaryA Regional Climate Model (RCM), MM5 (the Fifth Generation Pennsylvania State University/National Center for Atmospheric Research mesoscale model), is used to simulate summer precipitation in Central Alberta. MM5 was set up with a one-way, three-domain nested framework, with domain resolutions of 27, 9, and 3 km, respectively, and forced with ERA-Interim reanalysis data of ECMWF (European Centre for Medium-Range Weather Forecasts). The objective is to develop high resolution, grid-based Intensity-Duration-Frequency (IDF) curves based on the simulated annual maximums of precipitation (AMP) data for durations ranging from 15-min to 24-h. The performance of MM5 was assessed in terms of simulated rainfall intensity, precipitable water, and 2-m air temperature. Next, the grid-based IDF curves derived from MM5 were compared to IDF curves derived from six RCMs of the North American Regional Climate Change Assessment Program (NARCCAP) set up with 50-km grids, driven with NCEP-DOE (National Centers for Environmental Prediction-Department of Energy) Reanalysis II data, and regional IDF curves derived from observed rain gauge data (RG-IDF). The analyzed results indicate that 6-h simulated precipitable water and 2-m temperature agree well with the ERA-Interim reanalysis data. However, compared to RG-IDF curves, IDF curves based on simulated precipitation data of MM5 are overestimated especially for IDF curves of 2-year return period. In contract, IDF curves developed from NARCCAP data suffer from under-estimation and differ more from RG-IDF curves than the MM5 IDF curves. The over-estimation of IDF curves of MM5 was corrected by a quantile-based, bias correction method. By dynamically downscale the ERA-Interim and after bias correction, it is possible to develop IDF curves useful for regions with limited or no rain gauge data. This estimation process can be further extended to predict future grid-based IDF curves subjected to possible climate change impacts based on climate change projections of GCMs (general circulation models) of IPCC (Intergovernmental Panel on Climate Change).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Hydrology - Volume 510, 14 March 2014, Pages 436-446
نویسندگان
, , ,