کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6418143 1339322 2015 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Chebyshev centers and fixed point theorems
ترجمه فارسی عنوان
مراکز چبیشف و قضیه ثابت
کلمات کلیدی
نقشه برداری های اندازه گیری، نقاط ثابت، نقشه برداری غیرقابل انعطاف ساختار عادی،
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات آنالیز ریاضی
چکیده انگلیسی

Brodskii and Milman proved that there is a point in C(K), the set of all Chebyshev centers of K, which is fixed by every surjective isometry from K into K whenever K is a nonempty weakly compact convex subset having normal structure in a Banach space. Motivated by this result, Lim et al. raised the following question namely “does there exist a point in C(K) which is fixed by every isometry from K into K?”. In fact, Lim et al. proved that “if K is a nonempty weakly compact convex subset of a uniformly convex Banach space, then the Chebyshev center of K is fixed by every isometry T from K into K”. In this paper, we prove that if K is a nonempty weakly compact convex set having normal structure in a strictly convex Banach space and F is a commuting family of isometry mappings on K then there exists a point in C(K) which is fixed by every mapping in F.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Mathematical Analysis and Applications - Volume 422, Issue 2, 15 February 2015, Pages 880-885
نویسندگان
, ,