کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6434897 1637159 2015 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Research paperThe effect of interbedding on shale reservoir properties
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات زمین شناسی اقتصادی
پیش نمایش صفحه اول مقاله
Research paperThe effect of interbedding on shale reservoir properties
چکیده انگلیسی


- Shale/sand interbeds of the Kimmeridge Clay Formation generate a 'hybrid' shale oil resource.
- Rock-Eval S1 (kg oil/tonne rock) monitors shale retention and sand storage of oil.
- About 50% shale/50% sand and low TOC provide optimum oil retention and storage.

North Sea oil is overwhelmingly generated in shales of the Upper Jurassic - basal Cretaceous Kimmeridge Clay Formation. Once generated, the oil is expelled and ultimately migrates to accumulate in sandstone or carbonate reservoirs. The source rock shales, however, still contain the portion of the oil that was not expelled. As a consequence such shales and juxtaposed non-source lithofacies can form the targets for the exploration of 'unconventional oil'.In this paper, we examine part of the Kimmeridge Clay Formation as a hybrid shale resource system within which 'Hot Shale' and organic-lean sandstone and siltstone intervals are intimately interbedded. This hybrid system can contain a greater volume of oil because of the increased storage capacity due to larger matrix porosities of the sand-silt interbeds, together with a lower adsorptive affinity in the interbedded sandstone. The relationship between the estimated volume percentages of sand and mudstone and free oil determined from Rock-Eval® S1 yields is used to place limits on the drainage of oil from source mudstone to reservoir sand at the decimeter scale. These data are used to determine oil saturations in interbedded sand-mudstone sequences at peak oil maturity. Higher values of free hydrocarbon (as evidenced by the S1 value in mudstone) suggest that more oil is being retained in the mudstone, while higher S1 values in the interbedded sands suggest the oil is being drained to saturate the larger pore spaces. High silica content in the interbeds confirms the brittleness in this mudstone-sandstone lithofacies - an important factor to be considered for fracture stimulation to successfully work in a hybrid system. The key points of this hybrid unconventional system are the thickness, storage capacity and the possibility to capture a portion of the expelled, as well as retained oil.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Marine and Petroleum Geology - Volume 67, November 2015, Pages 154-169
نویسندگان
, , , , ,