کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6452029 1416985 2017 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Chemostat studies of bacteriophage M13 infected Escherichia coli JM109 for continuous ssDNA production
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
Chemostat studies of bacteriophage M13 infected Escherichia coli JM109 for continuous ssDNA production
چکیده انگلیسی


- Chemostat studies were performed in milliliter scale stirred-tank bioreactors.
- Bacteriophage M13 infection reduces maximal growth rate of E. coli by 15%.
- The cell specific ssDNA formation rate is constant at different growth rates.
- Prediction of ssDNA space-time yield was demonstrated using kinetic model.

Steady state studies in a chemostat enable the control of microbial growth rate at defined reaction conditions. The effects of bacteriophage M13 infection on maximum growth rate of Escherichia coli JM109 were studied in parallel operated chemostats on a milliliter-scale to analyze the steady state kinetics of phage production. The bacteriophage infection led to a decrease in maximum specific growth rate of 15% from 0.74 h−1 to 0.63 h−1. Under steady state conditions, a constant cell specific ssDNA formation rate of 0.15 ± 0.004 mgssDNA gCDW−1 h−1 was observed, which was independent of the growth rate. Using the estimated kinetic parameters for E. coli infected with bacteriophage M13, the ssDNA concentration in the steady state could be predicted as function of the dilution rate and the glucose concentration in the substrate. Scalability of milliliter-scale data was approved by steady state studies on a liter-scale at a selected dilution rate. An ssDNA space-time yield of 5.7 mg L−1 h−1 was achieved with increased glucose concentration in the feed at a dilution rate of 0.3 h−1, which is comparable to established fed-batch fermentation with bacteriophage M13 for ssDNA production.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Biotechnology - Volume 258, 20 September 2017, Pages 92-100
نویسندگان
, , , ,