کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6465736 1422956 2017 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
High power supercapacitors based on hierarchically porous sheet-like nanocarbons with ionic liquid electrolytes
ترجمه فارسی عنوان
ابررایانه های با قدرت بالا بر اساس نانو کربن های ورقه ای متخلخل سلول های سلولی با الکترولیت های مایع یونی
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
چکیده انگلیسی


- HPSNCs were obtained by a simply large-scale preparing method.
- Hierarchically porous structure from micro-to-macro-pores are obtained.
- High power density along with high energy density are achieved.
- The HPSNC-based EDLCs show superior cycling stability.

Supercapacitors with ionic liquid (IL) electrolytes can reach high work voltage and accompanied high energy density, which are the critical parameters for supercapacitors' rapid development. However, supercapacitors with IL electrolytes usually suffer from low power density due to low conductivity, large ionic size and high viscosity of the electrolytes. Herein we reported hierarchically porous sheet-like nanocarbons (HPSNCs) prepared by direct activation of graphene oxide and polytetrafluoroethylene (PTFE) polymer are promising electrode materials for high power supercapacitors with also high energy density. During the activation process, the PTFE particles as a spacer that can effectively hinder the restack of graphene oxide and simultaneously transformed into sheet-like nanocarbons at high temperatures. As a result, the as-prepared samples exhibit highest surface area of ∼2000 m2 g−1 and largest pore volume of 1.90 cm3 g−1. Benefit from hierarchically porous structure from micro-to-macro-pores, which largely shorten the diffusion distance of electrolyte ions, the HPSNC electrodes show a high energy density of 51.7 Wh kg−1 at a power density of 35 kW kg−1 in symmetric supercapacitors with IL electrolyte. In addition, the HPSNC-based supercapacitors also possess an excellent cycling stability with 88% capacitance retention after 5000 cycles. Unambiguously, this work demonstrated the potential of HPSNCs for high power supercapacitors with high energy density and application in integrated energy management electronics.

118

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemical Engineering Journal - Volume 322, 15 August 2017, Pages 73-81
نویسندگان
, , , , , , , , , , , , ,