کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6472219 1424130 2017 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Silver Fiber Fabric as the Current Collector for Preparation of Graphene- Based Supercapacitors
ترجمه فارسی عنوان
پارچه فیبر نقره ای به عنوان جمع کننده فعلی برای تهیه ابررسانای مبتنی بر گرافن
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
چکیده انگلیسی


- For the first time, silver fiber fabric (SFF) is employed as a current collector..
- rGO is electrophoretically deposited on the surface of SFF.
- The electrodes are prepared in various EP deposition times.
- The rGO/SFF-10 shows a higher capacitive performance of 172 mF/cm2 at 4 mA/cm2.
- The rGO/SFF-10 exhibits of 97% capacitance retention after 5000 cycles.

During the past few years, a considerable attention has been devoted to the development of textile- based energy storage devices and wearable electronics applications. In this paper, for the first time, we report a flexible high performance graphene-based supercapacitor using silver fiber fabric as the current collector. The silver fiber fabric offers remarkable advantages such as light weight, mechanical flexibility and ease of integration with electronic textiles, which well-suited for wearable energy storage devices. A new hybrid material of graphene-silver fiber fabric (rGO/SFF) was prepared through a facile electrophoretic deposition of graphene and being used as a binder-free flexible supercapacitor electrode. In order to obtain the optimum condition, the effect of deposition time was investigated and a duration time of 10 minute was selected as an optimum condition. The as-prepared binder-free electrode based on rGO/SFF-10 showed excellent electrochemical performance in the three-electrode configuration using KOH (3 M) as the supporting electrolyte, with the highest capacity of 172 mF/cm2 at 4 mA/cm2 and a capacitance retention of 97% after 5000 charge−discharge cycles. The high performance of rGO/SFF electrode is associated to the superior conductivity, high mechanical flexibility as well as good electrochemical stability of the silver fiber fabrics. The results suggest that the prepared electrode is a promising candidate for wearable energy storage applications due to its advantageous properties and the ease of preparation.

232

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electrochimica Acta - Volume 227, 10 February 2017, Pages 246-254
نویسندگان
, , ,