کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
659106 1458090 2012 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Experiments on impingement heat transfer with film extraction flow on the leading edge of rotating blades
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی جریان سیال و فرایندهای انتقال
پیش نمایش صفحه اول مقاله
Experiments on impingement heat transfer with film extraction flow on the leading edge of rotating blades
چکیده انگلیسی

A transient liquid crystal experiment was performed to study the heat transfer characteristic of impingement cooling with outflow film on the leading edge of turbine blades under rotating conditions. In the experiments, the angles between the jet direction and rotating shaft were 0°, 30°, and 45°, respectively. The impinging jet Reynolds number, based on the diameter of the impingement hole, ranged from 2000 to 12,000. The rotation number Ro (Ωd/u) ranged from 0 to 0.278. The relative impingement distance was fixed at 2. The results showed that, due to the effect of rotation, the spreading rate of the jet flow was enhanced and the heat transfer was weakened for all Reynolds numbers. For the condition of Re = 4000 and Ro = 0.139 with corresponding angles θ = 0°, 30°, 45°, the Nusselt number of the stagnation point decreased by 33%, 30%, and 35%, respectively, compared to the stationary results. Furthermore, for the corresponding angles θ = 30° and 45°, the location of the stagnation point is offset 0.6d (jet impingement hole diameter) and 0.9d down, respectively, when Ro = 0.139. The average Nusselt numbers on the suction surface and the pressure surface both decreased with increased rotating speed. Moreover, the reduction of the average Nusselt number on the pressure surface was larger than that on the suction surface. At Ro = 0.139, the average Nusselt number on the suction surface decreased less than 10% for all three angles, while on the pressure surface, the decrease was almost 20% compared to the result for Ro = 0.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Heat and Mass Transfer - Volume 55, Issues 21–22, October 2012, Pages 5425–5435
نویسندگان
, , , ,