کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6595758 458538 2014 54 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Adaptive sequential sampling for surrogate model generation with artificial neural networks
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Adaptive sequential sampling for surrogate model generation with artificial neural networks
چکیده انگلیسی
Surrogate models - simple functional approximations of complex models - can facilitate engineering analysis of complicated systems by greatly reducing computational expense. The construction of a surrogate model requires evaluation of the original model to gather the data necessary for building the surrogate. Sequential sampling procedures are proposed for determining and minimizing the required number of samples for efficient global surrogate construction. In this paper, two new adaptive sampling algorithms - one purely adaptive and one combining adaptive and space-filling characteristics - are proposed and compared to a purely space-filling approach. Our analysis suggests a mixed adaptive sampling approach for constructing surrogates for systems where the behavior of the underlying model is unknown. Results of the case study, optimization of carbon dioxide capture process with aqueous amines, revealed that the mixed adaptive sampling algorithm may reduce the required sample size by up to 40% compared to a purely space-filling design.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers & Chemical Engineering - Volume 68, 4 September 2014, Pages 220-232
نویسندگان
, ,