کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6664705 | 1427078 | 2018 | 28 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Non-destructive automatic quality evaluation of fresh-cut iceberg lettuce through packaging material
ترجمه فارسی عنوان
بررسی کیفیت اتوماتیک غیر مخرب کاه کیک یخ زده تازه از طریق مواد بسته بندی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
ارزیابی کیفیت غیر مخرب، درجه بندی بصری خودکار از طریق بسته بندی، یادگیری عمیق، شبکه عصبی متقاطع،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی شیمی
مهندسی شیمی (عمومی)
چکیده انگلیسی
The proposed approach aimed to enable this analysis on packaged fresh-cut lettuce with minimum constraints on the acquisition phase and without any care to flatten the surface of the bag facing the camera. A deep-learning architecture, based on Convolutional Neural Networks (CNNs), was used to identify regions of the image where the vegetable was visible with minimum colour distortions due to packaging. To meaningfully assess the performance of the system, each lettuce's sample was acquired both through packaging material and without packaging material. The image analysis was applied to both the resulting images to automatically grade their quality level. The results showed that the performance loss due to the presence of packaging is negligible (83% instead of 86%) and that the proposed system can be used to monitor the quality level of fresh-cut lettuce regardless of packaging at all the critical check points along the supply chain.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Food Engineering - Volume 223, April 2018, Pages 46-52
Journal: Journal of Food Engineering - Volume 223, April 2018, Pages 46-52
نویسندگان
Dario Pietro Cavallo, Maria Cefola, Bernardo Pace, Antonio Francesco Logrieco, Giovanni Attolico,