کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
6875005 1441467 2018 30 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Model-driven scheduling for distributed stream processing systems
ترجمه فارسی عنوان
برنامه ریزی مبتنی بر مدل برای سیستم های پردازش جریان توزیع شده
کلمات کلیدی
پردازش جریان، الگوریتم های برنامه ریزی، مدل های عملکرد، اطلاعات بزرگ، پردازش ابری، سیستم های توزیع شده،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
چکیده انگلیسی
Distributed Stream Processing Systems (DSPS) are “Fast Data” platforms that allow streaming applications to be composed and executed with low latency on commodity clusters and Clouds. Such applications are composed as a Directed Acyclic Graph (DAG) of tasks, with data parallel execution using concurrent task threads on distributed resource slots. Scheduling such DAGs for DSPS has two parts-allocation of threads and resources for a DAG, and mapping threads to resources. Existing schedulers often address just one of these, make the assumption that performance linearly scales, or use ad hoc empirical tuning at runtime. Instead, we propose model-driven techniques for both mapping and allocation that rely on low-overhead a priori performance modeling of tasks. Our scheduling algorithms are able to offer predictable and low resource needs that is suitable for elastic pay-as-you-go Cloud resources, support a high input rate through high VM utilization, and can be combined with other mapping approaches as well. These are validated for micro and application benchmarks, and compared with contemporary schedulers, for the Apache Storm DSPS.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Parallel and Distributed Computing - Volume 117, July 2018, Pages 98-114
نویسندگان
, ,