کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
6920126 | 863603 | 2015 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Estimation of the smallest eigenvalue in fractional escape problems: Semi-analytics and fits
ترجمه فارسی عنوان
تخمینی از کوچکترین ارزش واقعی در مشکلات فرار از دست رفته: نیمه تجزیه و تحلیل و متناسب
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی تئوریک و عملی
چکیده انگلیسی
Continuous time random walks with heavy tailed distributions of waiting times and jump lengths lead to situations when evolution of a probability density of finding a particle at given point at given time is described by the bi-fractional Smoluchowski-Fokker-Planck equation. A power-law distribution of waiting times results in very general properties of a survival probability which in turn can be used to estimate eigenvalues of some fractional operators. Here, the problem of numerical estimation of the smallest eigenvalues is discussed for the two generic problems: escape from a finite interval and the Kramers problem of escape from a potential well. We discuss both how to numerically obtain the (effective) smallest eigenvalue of the problem, and how it can be used in numerically assessing other important characteristics of the processes.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computer Physics Communications - Volume 187, February 2015, Pages 29-37
Journal: Computer Physics Communications - Volume 187, February 2015, Pages 29-37
نویسندگان
BartÅomiej Dybiec, Igor M. Sokolov,