کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7056688 1458057 2015 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Constant wall heat flux boundary condition in micro-channels filled with a porous medium with internal heat generation under local thermal non-equilibrium condition
ترجمه فارسی عنوان
شرایط مرزی جریان شار حرارتی ثابت در کانال های میکرو کانال پر شده با یک محیط متخلخل با تولید گرما درونی تحت شرایط غیر تعادل حرارتی محلی
کلمات کلیدی
میکرو کانال، رسانه های متخلخل، شرایط محلی حرارتی عدم تعادل، انتقال گرما همراه است تولید گرما داخلی،
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی جریان سیال و فرایندهای انتقال
چکیده انگلیسی
Forced convection heat transfer in a micro-channel filled with a porous material saturated with rarefied gas with internal heat generation is studied analytically in this work. The study is performed by analysing the boundary conditions for constant wall heat flux under local thermal non-equilibrium (LTNE) conditions. Invoking the velocity slip and temperature jump, the thermal behaviour of the porous-fluid system is studied by considering thermally and hydrodynamically fully-developed conditions. The flow inside the porous material is modelled by the Darcy-Brinkman equation. Exact solutions are obtained for both the fluid and solid temperature distributions for two primary approaches models A and B using constant wall heat flux boundary conditions. The temperature distributions and Nusselt numbers for models A and B are compared, and the limiting cases resulting in the convergence or divergence of the two models are also discussed. The effects of pertinent parameters such as fluid to solid effective thermal conductivity ratio, Biot number, Darcy number, velocity slip and temperature jump coefficients, and fluid and solid internal heat generations are also discussed. The results indicate that the Nusselt number decreases with the increase of thermal conductivity ratio for both models. This contrasts results from previous studies which for model A reported that the Nusselt number increases with the increase of thermal conductivity ratio. The Biot number and thermal conductivity ratio are found to have substantial effects on the role of temperature jump coefficient in controlling the Nusselt number for models A and B. The Nusselt numbers calculated using model A change drastically with the variation of solid internal heat generation. In contrast, the Nusselt numbers obtained for model B show a weak dependency on the variation of internal heat generation. The velocity slip coefficient has no noticeable effect on the Nusselt numbers for both models. The difference between the Nusselt numbers calculated using the two models decreases with an increase of the temperature jump coefficient.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Heat and Mass Transfer - Volume 85, June 2015, Pages 524-542
نویسندگان
,