کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7059266 1458088 2012 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Enhanced heat transfer performance of alumina sponge-like nano-porous structures through surface wettability control in nucleate pool boiling
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی جریان سیال و فرایندهای انتقال
پیش نمایش صفحه اول مقاله
Enhanced heat transfer performance of alumina sponge-like nano-porous structures through surface wettability control in nucleate pool boiling
چکیده انگلیسی
For several decades, a porous surface has been recognized as an efficient medium to increase boiling performance in a nucleate boiling regime. Most feasible porous surfaces have been studied in millimeter and micron-sized domains. It has been believed that a higher wall superheat is required to commence incipient nucleate boiling under a submicron regime. In this study, we demonstrate that a significantly enhanced pool boiling heat transfer is observed in a submicron regime through three dimensionally interconnected hybrid pores: the Alumina sponge-like nano-porous structure (ASNPS). The structural uniqueness of the ASNPS leads to an enlarged surface area, increases the potential number of the active nucleation site density, and improves the vapor-liquid menisci through the reentrant pore. Simultaneously, by changing the surface wettability with a hydrophobic self-assembled monolayer (SAM) coating, the number of active nucleation site density is improved. Eventually, the combination of the ASNPS and hydrophobic SAM coating can achieve substantial heat transfer coefficient (HTC) enhancement in the nucleate boiling. Also, the thickness of the ASNPS is a critical issue to adequately augment the HTC in pool boiling. The thickness of the ASNPS is optimized by examining the boiling performance of the ASNPS fabricated in different amounts of anodizing times. A classical mechanistic model from literature was modified and compared with the experimentally obtained data. The modified mechanistic model - with the combination of forced-convection and thin liquid film evaporation - showed reasonable predictions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Heat and Mass Transfer - Volume 55, Issues 25–26, December 2012, Pages 7487-7498
نویسندگان
, , ,