کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
70956 48857 2007 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Oriented immobilization of stem bromelain via the lone histidine on a metal affinity support
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
پیش نمایش صفحه اول مقاله
Oriented immobilization of stem bromelain via the lone histidine on a metal affinity support
چکیده انگلیسی

Bromelain is a basic, 23.8 kDa thiol proteinase obtained from the stem of the pineapple plant (Ananas comosus) and is unique for it contains a single histidine residue (His-158) in the polypeptide. Based on the technology of protein separation with immobilized metal ion affinity chromatography (IMAC), a method for oriented immobilization of bromelain was selected. Bromelain was successfully immobilized on iminodiacetic acid carrier Sepharose 6B. Cu2+ complexed with iminodiacetate (IDA) was used as the chelating ligand to bind the lone histidine on bromelain. Simultaneously, preparation of a high affinity immobilized preparation was attempted using a soluble cross-linked preparation of bromelain on Cu-IDA-Sepharose. However this second method proved unsuccessful, possibly due to poor histidine accessibility in the cross-linked preparation. The immobilized preparation obtained using uncrosslinked bromelain was more resistant to thermal inactivation, as evidenced by retention of over enzyme 50% activity after incubation at 60 °C, as compared to 20% retained by the native enzyme. The immobilized preparation also exhibited a broader pH-activity profile in acidic range. The native, immobilized and soluble cross-linked bromelain showed apparent Michaelis constant (Km) values of 1.08, 0.42, 1.56 mg/ml, respectively, using casein as the substrate. While the maximum velocity (Vmax) values of the soluble and immobilized preparations were comparable, cross-linked preparation showed a 20% decrease, suggesting inactivation. The mild conditions used for predominantly oriented immobilization exploiting the unique property of single histidine, the high recovery of immobilized preparations, the stability, reusability and the regenerability of the matrix are the main features of the method reported here.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Molecular Catalysis B: Enzymatic - Volume 45, Issues 3–4, 30 April 2007, Pages 78–83
نویسندگان
, , ,