کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
72441 49020 2015 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Methane adsorption on specially designed TiC and Mo2C derived carbons with different pore size and surface morphology
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
پیش نمایش صفحه اول مقاله
Methane adsorption on specially designed TiC and Mo2C derived carbons with different pore size and surface morphology
چکیده انگلیسی


• Three TiC and Mo2C derived carbons with different structure and porosity were studied.
• The microstructure of carbon surface affects noticeably the amount of CH4 adsorbed.
• The high amount of defects in carbon structure is very important for CH4 storage.
• The carbon with the most disordered surface adsorbs 55% more CH4 per surface area.

The effect of pore size and surface morphology of carbon materials on the adsorption of methane was studied selecting three microstructurally different carbide-derived carbons (CDC), synthesized from titanium carbide (TiC-CDC 950 °C and TiC-CDC 1100 °C HCl) and molybdenum carbide (Mo2C-CDC 1000 °C). Nitrogen sorption and Raman spectroscopy methods were used to obtain the specific surface area, ratio of micro- and mesopores, the pore size distribution and disorder in structure, respectively. Studied CDCs had high surface area (>800 m2 g−1), but the pore size distribution was remarkably different. TiC-CDC 950 °C contains mainly micropores (from 0.5 to 1 nm), TiC-CDC 1100 °C HCl both micro- and mesopores (from 1.5 to 5 nm) and Mo2C-CDC 1000 °C mainly mesopores (from 2.5 to 10 nm). Structural correlation lengths calculated from Raman spectra showed that CDC with the smallest pores (TiC-CDC 950 °C) was the most disordered of carbon materials studied. Excess isotherms (EI) of methane adsorption were measured at different temperatures (from −100 to 40 °C) and pressures (from 0.03 to 1.35 MPa) and modelled with modified Langmuir equation to obtain the absolute adsorption isotherms, enthalpies and entropies of methane adsorption. It was concluded that the change in entropy is the key factor determining the amount of gas adsorbed per unit of surface area of CDC and up to 55% more methane can be adsorbed if the structure of carbon material is optimized.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Microporous and Mesoporous Materials - Volume 218, 1 December 2015, Pages 167–173
نویسندگان
, , , ,