کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
72739 49032 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Structure, reactivity and mechanical properties of water ultra-confined in the ordered crystal: A case study of jennite
ترجمه فارسی عنوان
ساختار، واکنش پذیری و خواص مکانیکی آب فوق العاده محدود در کریستال سفارش داده شده: مطالعه موردی جنت
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
چکیده انگلیسی


• Water dissociates into more Ca–OH than Si–OH in interlayer region.
• Water confined in the nano-pore has dense H-bond with silicate skeleton.
• ReaxFF combines the mechanical performance and chemical reactions.
• Water dissociation is activated in the presence of tensile loading.

Jennite is an important structural prototype of C–S–H gel that is the major component of the cement hydrate. The structure, dynamics and mechanical properties of jennite were investigated by reactive force field molecular dynamics simulation. Water molecules, confined between the neighboring calcium silicate sheets, dissociate and form the Si–OH bonds with the oxygen atoms in the bridging silicate tetrahedron, which is consistent with the strong signal of Si–OH linkage from NMR testing (Cong and Kirkpatrick, 1996) [1]. Dynamically, the high diffusion rate and the dissociation reaction of water molecules reduce the stability in the interlayer region. Additionally, uniaxial tensile testing, applied to the jennite structure in the x, y and z direction, exhibited the an-isotropic nature of the layered crystal. While Si–O bonds, acting in a skeleton role, contribute to the mechanical behavior in the y direction, the unstable H-bonds connectivity weakens the tensile strength and stiffness in the z direction. More importantly, the reactive force field accompanied together both the mechanical response and chemical response during the large tensile deformation process. On the one hand, the silicate chains de-polymerize to enhance the loading resistance and on the other hand, water molecules, attacking the Si–O and Ca–O bonds, dissociate into hydroxyls, which are detrimental to the cohesive force development.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Microporous and Mesoporous Materials - Volume 204, 1 March 2015, Pages 106–114
نویسندگان
, , , ,