کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7480374 1485235 2016 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Environmental effects of shifts in a regional heating mix through variations in the utilization of solid biofuels
ترجمه فارسی عنوان
اثرات زیست محیطی تغییرات در یک گرمایش منطقه ای از طریق تغییرات در استفاده از سوخت های زیستی جامد
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
Solid Biofuels, i.e. wood, play an important role in present and future national and global climate change mitigation policies. Wood energy, while displaying favorable properties for the mitigation of climate change also exhibits several drawbacks, such as potentially high emission of particulate matter. To assess the environmental effects of shifts in the heating mix, emission factors of the comprising energy carriers and the Bavarian heating mix were determined. Through the application of regionalized substitution percentiles the environmental effects caused by shifts in the amount of final energy provided by solid biofuels could be identified. For this purpose, four scenarios, based on political and scientific specifications were assessed. In 2011 a total amount of 663.715 TJ of final energy was used for the provision of heat in Bavaria, with solid biofuels exhibiting the third largest share of 12.6% (83% of renewable heat). Environmental effects were evaluated through life cycle assessments assessing the impact categories of Global Warming (GW), Particulate Matter emissions (PM), Freshwater Eutrophication (ET) and Acidification (AC). Additionally, the non-renewable primary energy consumption (PE) was analyzed. The heating mix in Bavaria (Baseline) causes emissions of 49.6 Mt CO2-eq. * yr−1(GW), 14.555 t of PM2.5-eq. * yr−1 (PM), 873.4 t P-eq. * yr−1 (ET), and 82.299 kmol H+ eq. * yr−1 (AC), for which 721,745 TJ of primary energy were expended. Current policies entail a GHG reduction potential of approximately 1 Mt CO2-eq. * yr−1 while increasing the amount of energy wood by 15%. The maximum, hypothetical share of solid biofuels of the heating mix cannot surpass 25%, while the climate change mitigation performance of the current use of solid biofuels is approximately 6.4 Mt CO2-eq. * yr−1. GHG-emissions would be 13% higher and PM emissions 77% lower without this energetic use of wood. Furthermore, our calculations allow for new specified displacement factors through energy substitution, based on the current wood energy mix for regionalized conditions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Environmental Management - Volume 177, 15 July 2016, Pages 177-191
نویسندگان
, , , ,