کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
753082 | 895492 | 2011 | 9 صفحه PDF | دانلود رایگان |

A physical and explicit compact model for lightly doped FinFETs is presented. This design-oriented model is valid for a large range of silicon Fin widths and lengths, using only a very few number of model parameters. The quantum mechanical effects (QMEs), which are very significant for thin Fins below 15 nm, are included in the model as a correction to the surface potential. A physics-based approach is also followed to model short-channel effects (roll-off), drain-induced barrier lowering (DIBL), subthreshold slope degradation, drain saturation voltage, velocity saturation, channel length modulation and carrier mobility degradation. The quasi-static model is then developed and accurately accounts for small-geometry effects as well. This compact model is accurate in all regions of operation, from weak to strong inversion and from linear to saturation regions. It has been implemented in the high-level language Verilog-A and exhibits an excellent numerical efficiency. Finally, comparisons of the model with 3D numerical simulations show a very good agreement making this model well-suited for advanced circuit simulations.
► We propose a physical and explicit compact model for lightly doped FinFETs.
► This design-oriented model is valid for a large range of silicon Fin widths/lengths.
► It describes well the drain current, small signal parameters and capacitances.
► It takes into account all short-channel effects and quantum mechanical effects.
► This compact model needs a very few number of electrical parameters (4).
Journal: Solid-State Electronics - Volume 62, Issue 1, August 2011, Pages 165–173