کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
75321 | 49113 | 2009 | 4 صفحه PDF | دانلود رایگان |

A supercritical fluid process method has been developed for fabricating mesoporous zirconia thin films with enhanced thermal stability up to a temperature of 850 °C. Both the supercritical CO2 and the precursor tetramethoxysilane play an important role in enhancing the thermal stability of these films. Powder X-ray diffraction, Atomic force microscope, spectroscopic ellipsometry and transmission electron microscope analyses show that the thin films fabricated by the supercritical fluid process method have a highly ordered mesoporous structure, a nanocrystalline inorganic framework and a high optical transparency. These zirconia thin films have potential applications as electrodes in solid oxide fuel cells where high thermal stability is essential.
Journal: Microporous and Mesoporous Materials - Volume 117, Issues 1–2, 1 January 2009, Pages 161–164