کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7562615 | 1491521 | 2016 | 35 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Classification of gas chromatographic fingerprints of saffron using partial least squares discriminant analysis together with different variable selection methods
ترجمه فارسی عنوان
طبقه بندی اثر انگشت کروماتوگرافی گاز زعفران با استفاده از تجزیه و تحلیل جزئی با استفاده از روش های مختلف انتخاب متغیر
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
طبقه بندی چند متغیره، انتخاب متغیر، اثر انگشت کروماتوگرافی، تجزیه و تحلیل خرده مقیاس جزئی، زعفران،
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آنالیزی یا شیمی تجزیه
چکیده انگلیسی
In the present work, the abilities of five different variable selection methods including recursive partial least squares (rPLS), variable importance in projection (VIP), selectivity ratio (SR), significance multivariate correlation (sMC), and PLS loading weights were evaluated on the supervised classification of gas chromatographic fingerprints of saffron using PLS-discriminant analysis (PLS-DA). In this regard, eighty-three saffron samples analyzed by gas chromatography-flam ionization detector (GC-FID), were used as a case study. The GC-FID chromatograms of saffron samples were baseline corrected and aligned using asymmetric least squares (AsLS) and correlation optimized warping (COW) methods, respectively. Then, the whole digital profiles of preprocessed chromatograms were normalized to internal standard (I.S.), mean-centered, pareto-scaled and finally modeled by PLS-DA to classify saffron samples according to their cultivation areas. Afterwards, performance of different variable selection methods (i.e., rPLS, VIP, SR, sMC and loading weights) for choosing the most important variables (i.e., retention time points) in GC-FID fingerprints, were compared in terms of the model's interpretability and predictability. The results indicated that although different variable selection methods could select different subset of variables, but, prediction ability of all the models were still acceptable. The best model performance was achieved when the result of all variable selection methods were taken into account. Finally, nine secondary metabolites of saffron suggested by almost all selection methods were chosen as the saffron biomarkers.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemometrics and Intelligent Laboratory Systems - Volume 158, 15 November 2016, Pages 165-173
Journal: Chemometrics and Intelligent Laboratory Systems - Volume 158, 15 November 2016, Pages 165-173
نویسندگان
Ghazaleh Aliakbarzadeh, Hadi Parastar, Hassan Sereshti,