کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7589961 | 1492100 | 2016 | 7 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Development of NIRS models to predict protein and amylose content of brown rice and proximate compositions of rice bran
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی آنالیزی یا شیمی تجزیه
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
With the escalating persuasion of economic and nutritional importance of rice grain protein and nutritional components of rice bran (RB), NIRS can be an effective tool for high throughput screening in rice breeding programme. Optimization of NIRS is prerequisite for accurate prediction of grain quality parameters. In the present study, 173 brown rice (BR) and 86 RB samples with a wide range of values were used to compare the calibration models generated by different chemometrics for grain protein (GPC) and amylose content (AC) of BR and proximate compositions (protein, crude oil, moisture, ash and fiber content) of RB. Various modified partial least square (mPLSs) models corresponding with the best mathematical treatments were identified for all components. Another set of 29 genotypes derived from the breeding programme were employed for the external validation of these calibration models. High accuracy of all these calibration and prediction models was ensured through pair t-test and correlation regression analysis between reference and predicted values.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Food Chemistry - Volume 191, 15 January 2016, Pages 21-27
Journal: Food Chemistry - Volume 191, 15 January 2016, Pages 21-27
نویسندگان
Torit Baran Bagchi, Srigopal Sharma, Krishnendu Chattopadhyay,