کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7607625 1493362 2018 52 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Molecular dispersion in pre-turbulent and sustained turbulent flow of carbon dioxide
ترجمه فارسی عنوان
پراکندگی مولکولی در جریان آشفته و پیش پایدار دی اکسید کربن است
موضوعات مرتبط
مهندسی و علوم پایه شیمی شیمی آنالیزی یا شیمی تجزیه
چکیده انگلیسی
The experimental data revealed that under a pre-turbulent flow regime (Re < 2000), Da¯ is 2-6 times larger (3.5 × 10−4 cm2/s) than the bulk diffusion coefficients Dm of the analyte (1.6 × 10−4 and 5.8 × 10−5 cm2/s for acetonitrile and coronene, respectively). This result was explained by the random formation of decaying or vanishing turbulent puffs under pre-turbulent flow regime. Yet, the peak width remains controlled exclusively by the slow mass transfer in the mobile phase across the inner diameter (i.d.) of the OTC. Under sustained turbulent flow regime (Re > 2500), Da¯ is about four to five orders of magnitude larger than Dm. The experimental data slightly overestimated the turbulent dispersion coefficients predicted by Flint-Eisenklam model (Da¯=4 cm2/s). The discrepancy is explained by the approximate nature of the general Golay equation, which assumes that Da¯ is strictly uniform across the entire i.d. of the OTC. In fact, both the viscous and buffer wall layers, in which viscous effects dominate inertial effects, cannot be considered as fully developed turbulent regions. Remarkably, the mass transfer mechanism in OTC under sustained turbulent flow regime is not only controlled by longitudinal dispersion but also by a slow mass transfer in the mobile phase across the thick buffer layer and the thin viscous layer. Altogether, these layers occupy as much as 35% of the OTC volume at Re = 4000. From a theoretical viewpoint, the general Golay HETP equation is only an approximate model which should be refined based on the actual profile of the analyte dispersion coefficient across the OTC i.d. In practice, the measured plate height of non-retained analytes under sustained turbulent flow of carbon dioxide are two orders of magnitude smaller than those expected under hypothetical laminar flow regime.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Chromatography A - Volume 1564, 24 August 2018, Pages 176-187
نویسندگان
, ,