کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
77523 | 49283 | 2016 | 6 صفحه PDF | دانلود رایگان |
• Monolithically polymer lens-integrated compact high-power solar system is proposed.
• Overall integration process is very simple and cost-effective.
• The power conversion performance is improved by ~50.2% with the polymer lens.
• The packaged solar system is highly robust to environment and contamination.
A dye-sensitized solar cell (DSSC) is integrated monolithically with a polymer lens to demonstrate a compact, low-cost and high-power solar energy harvesting system. The proposed polymer lens is composed of a plano-convex lens for concentrating light and a supporting layer for controlling the distance between the lens and DSSC according to its thickness. A single-step polymer replication process with a glass-based lens mold makes it possible to fabricate the polymer lens in a simple and reproducible manner. The power conversion performance of the polymer lens-integrated dye-sensitized (PLD) solar system is optimized by simply controlling the height of the supporting layer. The maximum output power of DSSC is improved by ~50.2% after monolithically integrating with the polymer lens with a 3-mm-thick supporting layer. Finally, the PLD solar system is packaged with a self-cleanable polymer film to protect the lens from the environment and to make the system robust to contamination. Through a simple self-cleaning test, it is found that the PLD system can recover ~95.2% of its original output power.
Figure optionsDownload as PowerPoint slide
Journal: Solar Energy Materials and Solar Cells - Volume 155, October 2016, Pages 362–367