کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
77843 49307 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی کاتالیزور
پیش نمایش صفحه اول مقاله
Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells
چکیده انگلیسی


• We investigate atmospheric influence on performance of perovskite solar cells.
• Oxidizing spiro-MeOTAD in dry air leads to the highest cell efficiency of 11.2%.
• Device efficiency dynamically changes during the drying process.
• Our results are useful for properly applying spiro-MeOTAD in perovskite devices.

Organometal trihalide perovskite solar cells have recently attracted lots of attention in the photovoltaic community due to their escalating efficiency and solution processability. The most efficient organometallic mixed-halide sensitized solar cells often employ 2,2′7,7′-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9′-spirobifluorene (spiro-MeOTAD) as the hole-transporting material. In this work, we investigated the effect of different atmospheric storage conditions, particularly vacuum, dry nitrogen, and dry air, on the photovoltaic performance of TiO2–CH3NH3PbI3−xClx–spiro-MeOTAD solar cells. We found that spin coating of spiro-MeOTAD in an oxygen atmosphere alone was not adequate to functionalize its hole-transport property completely, and our systematic experiments revealed that the device efficiency depends on the ambient atmospheric conditions during the drying process of spiro-MeOTAD. Complementary incident photon to current conversion efficiency (IPCE), light absorption and photoluminescence quenching measurements allowed us to attribute the atmosphere-dependent efficiency to the improved electronic characteristics of the solar cells. Furthermore, our Fourier transform infrared and electrical impedance measurements unambiguously detected modifications in the spiro-MeOTAD after the drying processes in different gas environments. Our findings demonstrate that proper oxidization and p-doping in functionalizing spiro-MeOTAD play a very critical role in determining device performance. These findings will facilitate the search for alternative hole-transporting materials in high-performance perovskite solar cells with long-term stability.

Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Solar Energy Materials and Solar Cells - Volume 137, June 2015, Pages 6–14
نویسندگان
, , , , , , ,