کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7843850 | 1506522 | 2018 | 30 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Quantification of oil recovery efficiency, CO2 storage potential, and fluid-rock interactions by CWI in heterogeneous sandstone oil reservoirs
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
شیمی
شیمی تئوریک و عملی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
With this objective, a series of high-pressure and high-temperature coreflood experiments were performed on a heterogeneous sandstone core. Based on the results, the heterogeneity of rock dominated water and carbonated water flow paths led to early breakthrough. However, interestingly, the ultimate oil recovery by CWI, either as the secondary or tertiary injection scenario, was higher than that of conventional waterflooding. Both secondary and tertiary CWI showed a strong potential for increasing oil recovery from the heterogeneous core and re-mobilized part of the trapped oil. In addition to the strong oil recovery by CWI, CWI demonstrated the good potential for safe underground storage of CO2 in heterogeneous reservoirs. Furthermore, carbonated water-sandstone rock interactions led to the slight mineral dissolution of the rock and separation of the submicron inorganic particles from the surface of the rock. These inorganic particles, which were previously interacting with asphaltenes and polar components of the oil during the ageing period, produced a hydrogen bond with water and formed oil in water emulsion. This phenomenon is called “Pickering emulsion” which can lead to wettability alteration from oil-wet towards more water-wet conditions and in turn a better oil recovery by CWI.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Molecular Liquids - Volume 249, January 2018, Pages 779-788
Journal: Journal of Molecular Liquids - Volume 249, January 2018, Pages 779-788
نویسندگان
Mojtaba Seyyedi, Mehran Sohrabi, Adam Sisson, Shaun Ireland,