کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
7882101 | 1509606 | 2014 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Hydrogen-assisted decohesion and localized plasticity in dual-phase steel
ترجمه فارسی عنوان
انعطاف پذیری هیدروژنی و پلاستیکی موضعی در فولاد دو مرحله ای
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
هراس هیدروژن، فولاد دو مرحله ای، فریت، مارتنزیت، خسارت،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی مواد
سرامیک و کامپوزیت
چکیده انگلیسی
Hydrogen embrittlement affects high-strength ferrite/martensite dual-phase (DP) steels. The associated micromechanisms which lead to failure have not been fully clarified yet. Here we present a quantitative micromechanical analysis of the microstructural damage phenomena in a model DP steel in the presence of hydrogen. A high-resolution scanning electron microscopy-based damage quantification technique has been employed to identify strain regimes where damage nucleation and damage growth take place, both with and without hydrogen precharging. The mechanisms corresponding to these regimes have been investigated by employing post-mortem electron channeling contrast imaging and electron backscatter diffraction analyses, as well as additional in situ deformation experiments. The results reveal that damage nucleation mechanism (i.e. martensite decohesion) and the damage growth mechanisms (e.g. interface decohesion) are both promoted by hydrogen, while the crack-arresting capability of the ferrite is significantly reduced. The observations are discussed on the basis of the hydrogen-enhanced decohesion and hydrogen-enhanced localized plasticity mechanisms. We discuss corresponding microstructure design strategies for better hydrogen-related damage tolerance of DP steels.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Materialia - Volume 70, 15 May 2014, Pages 174-187
Journal: Acta Materialia - Volume 70, 15 May 2014, Pages 174-187
نویسندگان
Motomichi Koyama, Cemal Cem Tasan, Eiji Akiyama, Kaneaki Tsuzaki, Dierk Raabe,