کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7915573 1511021 2018 41 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Prediction of heat transfer coefficients for forced convective boiling of N2-hydrocarbon mixtures at cryogenic conditions using artificial neural networks
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد مواد الکترونیکی، نوری و مغناطیسی
پیش نمایش صفحه اول مقاله
Prediction of heat transfer coefficients for forced convective boiling of N2-hydrocarbon mixtures at cryogenic conditions using artificial neural networks
چکیده انگلیسی
The results demonstrate that the proposed artificial neural network (ANN)-based approaches greatly outperform available methodologies. While Granryd's correlation predicts experimental data within a mean relative error mre = 44% and the S-B-G method produces mre = 42%, DMP-ANN has mre = 7.4% and eff-ANN has mre = 3.9%. Considering that eff-ANN has the lowest mean relative error (one tenth of previously available methodologies) and the broadest range of applicability, it is recommended for future calculations. Implementation is straightforward within a variety of platforms and the matrices with the ANN weights are given in the appendix for efficient programming.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Cryogenics - Volume 92, June 2018, Pages 60-70
نویسندگان
, , , ,