کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
7934727 1512940 2018 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Flow and heat transfer behaviour of nanofluids in microchannels
ترجمه فارسی عنوان
رفتار جریان و انتقال حرارت نانوسیم ها در میکرو کانال ها
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد مواد الکترونیکی، نوری و مغناطیسی
چکیده انگلیسی
Flow and heat transfer of aqueous based silica and alumina nanofluids in microchannels were experimentally investigated. The measured friction factors were higher than conventional model predictions at low Reynolds numbers particularly with high nanoparticle concentrations. A decrease in the friction factor was observed with increasing Reynolds number, possibly due to the augmentation of nanoparticle aggregate shape arising from fluid shear and alteration of local nanoparticle concentration and nanofluid viscosity. Augmentation of the silica nanoparticle morphology by fluid shear may also have affected the friction factor due to possible formation of a core/shell structure of the particles. Measured thermal conductivities of the silica nanofluids were in approximate agreement with the Maxwell-Crosser model, whereas the alumina nanofluids only showed slight enhancements. Enhanced convective heat transfer was observed for both nanofluids, relative to their base fluids (water), at low particle concentrations. Heat transfer enhancement increased with increasing Reynolds number and microchannel hydraulic diameter. However, the majority of experiments showed a larger increase in pumping power requirements relative to heat transfer enhancements, which may hinder the industrial uptake of the nanofluids, particularly in confined environments, such as Micro Electro-Mechanical Systems (MEMS).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Progress in Natural Science: Materials International - Volume 28, Issue 2, April 2018, Pages 225-234
نویسندگان
, , , , , , ,